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Abstract. Objective functions for training of deep networks for face-
related recognition tasks, such as facial expression recognition (FER), usu-
ally consider each sample independently. In this work, we present a novel
peak-piloted deep network (PPDN) that uses a sample with peak expres-
sion (easy sample) to supervise the intermediate feature responses for a
sample of non-peak expression (hard sample) of the same type and from
the same subject. The expression evolving process from non-peak expres-
sion to peak expression can thus be implicitly embedded in the network to
achieve the invariance to expression intensities. A special-purpose back-
propagation procedure, peak gradient suppression (PGS), is proposed for
network training. It drives the intermediate-layer feature responses of non-
peak expression samples towards those of the corresponding peak expres-
sion samples, while avoiding the inverse. This avoids degrading the recogni-
tion capability for samples of peak expression due to interference from their
non-peak expression counterparts. Extensive comparisons on two popu-
lar FER datasets, Oulu-CASIA and CK+, demonstrate the superiority of
the PPDN over state-of-the-art FER methods, as well as the advantages
of both the network structure and the optimization strategy. Moreover, it
is shown that PPDN is a general architecture, extensible to other tasks
by proper definition of peak and non-peak samples. This is validated by
experiments that show state-of-the-art performance on pose-invariant face
recognition, using the Multi-PIE dataset.

Keywords: Facial expression recognition · Peak-piloted · Deep net-
work · Peak gradient suppression

1 Introduction

Facial Expression Recognition (FER) aims to predict the basic facial expres-
sions (e.g. happy, sad, surprise, angry, fear, disgust) from a human face image, as
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Fig. 1. Examples of six facial expression samples, including surprise, angry, happy,
fear, sad and disgust. For each subject, the peak and non-peak expressions are shown.

illustrated in Fig. 1.1 Recently, FER has attracted much research attention [1–7].
It can facilitate other face-related tasks, such as face recognition [8] and align-
ment [9]. Despite significant recent progress [4,10–12], FER is still a challenging
problem, due to the following difficulties. First, as illustrated in Fig. 1, different
subjects often display the same expression with diverse intensities and visual
appearances. In a videostream, an expression will first appear in a subtle form
and then grow into a strong display of the underlying feelings. We refer to the
former as a non-peak and to the latter as a peak expression. Second, peak and
non-peak expressions by the same subject can have significant variation in terms
of attributes such as mouth corner radian, facial wrinkles, etc. Third, non-peak
expressions are more commonly displayed than peak expressions. It is usually
difficult to capture critical and subtle expression details from non-peak expres-
sion images, which can be hard to distinguish across expressions. For example,
the non-peak expressions for fear and sadness are quite similar in Fig. 1.

Recently, deep neural network architectures have shown excellent perfor-
mance in face-related recognition tasks [13–15]. The has led to the introduc-
tion of FER network architectures [4,16]. There are, nevertheless, some impor-
tant limitations. First, most methods consider each sample independently during
learning, ignoring the intrinsic correlations between each pair of samples (e.g.,
easy and hard samples). This limits the discriminative capabilities of the learned
models. Second, they focus on recognizing the clearly separable peak expressions
and ignore the most common non-peak expression samples, whose discrimination
can be extremely challenging.

In this paper, we propose a novel peak-piloted deep network (PPDN) archi-
tecture, which implicitly embeds the natural evolution of expressions from non-
peak to peak expression in the learning process, so as to zoom in on the subtle
differences between weak expressions and achieve invariance to expression inten-
sity. Intuitively, as illustrated in Fig. 2, peak and non-peak expressions from the
same subject often exhibit very strong visual correlations (e.g., similar face parts)
and can mutually help the recognition of each other. The proposed PPDN uses
the feature responses to samples of peak expression (easy samples) to supervise

1 This work was performed when Xiaoyun Zhao was an intern at 360 AI Institute.
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Fig. 2. Expression evolving process from non-peak expression to peak expression.

the responses to samples of non-peak expression (hard samples) of the same type
and from the same subject. The resulting mapping of non-peak expressions into
their corresponding peak expressions magnifies their critical and subtle details,
facilitating their recognition.

In principle, an explicit mapping from non-peak to peak expression could
significantly improve recognition. However, such a mapping is challenging to
generate, since the detailed changes of face features (e.g., mouth corner radian
and wrinkles) can be quite difficult to predict. We avoid this problem by focusing
on the high-level feature representation of the facial expressions, which is both
more abstract and directly related to facial expression recognition. In particular,
the proposed PPDN optimizes the tasks of (1) feature transformation from non-
peak to peak expression and (2) recognition of facial expressions in a unified
manner. It is, in fact, a general approach, applicable to many other recognition
tasks (e.g. face recognition) by proper definition of peak and non-peak samples
(e.g. frontal and profile faces). By implicitly learning the evolution from hard
poses (e.g., profile faces) to easy poses (e.g., near-frontal faces), it can improve
the recognition accuracy of prior solutions to these problems, making them more
robust to pose variation.

During training, the PPDN takes an image pair with a peak and a non-
peak expression of the same type and from the same subject. This image pair
is passed through several intermediate layers to generate feature maps for each
expression image. The L2-norm of the difference between the feature maps of
non-peak and peak expression images is then minimized, to embed the evolution
of expressions into the PPDN framework. In this way, the PPDN incorporates the
peak-piloted feature transformation and facial expression recognition into a uni-
fied architecture. The PPDN is learned with a new back-propagation algorithm,
denotes peak gradient suppression (PGS), which drives the feature responses to
non-peak expression instances towards those of the corresponding peak expres-
sion images, but not the contrary. This is unlike the traditional optimization of
Siamese networks [13], which encourages the feature pairs to be close to each
other, treating the feature maps of the two images equally. Instead, the PPDN
focuses on transforming the features of non-peak expressions towards those of
peak expressions. This is implemented by, during each back-propagation iter-
ation, ignoring the gradient information due to the peak expression image in
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the L2-norm minimization of feature differences, while keeping that due to the
non-peak expression. The gradients of the recognition loss, for both peak and
non-peak expression images, are the same as in traditional back-propagation.
This avoids the degradation of the recognition capability of the network for
samples of peak expression due to the influence of non-peak expression samples.

Overall, this work has four main contributions. (1) The PPDN architecture
is proposed, using the responses to samples of peak expression (easy samples)
to supervise the responses to samples of non-peak expression (hard samples) of
the same type and from the same subject. The targets of peak-piloted feature
transformation and facial expression recognition, for peak and non-peak expres-
sions, are optimized simultaneously. (2) A tailored back-propagation procedure,
PGS, is proposed to drive the responses to non-peak expressions towards those of
the corresponding peak expressions, while avoiding the inverse. (3) The PPDN
is shown to perform intensity-invariant facial expression recognition, by effec-
tively recognizing the most common non-peak expressions. (4) Comprehensive
evaluations on several FER datasets, namely CK+ [17] and Oulu-CASIA [18],
demonstrate the superiority of the PPDN over previous methods. Its general-
ization to other tasks is also demonstrated through state-of-the-art robust face
recognition performance on the public Multi-PIE dataset [19].

2 Related Work

There have been several recent attempts to solve the facial expression recogni-
tion problem. These methods can be grouped into two categories: sequence-based
and still image approaches. In the first category, sequence-based approaches [1,
7,18,20,21] exploit both the appearance and motion information from video
sequences. In the second category, still image approaches [4,10,12] recognize
expressions uniquely from image appearance patterns. Since still image methods
are more generic, recognizing expressions in both still images and sequences, we
focus on models for still image expression recognition. Among these, both hand-
crafted pipelines and deep learning methods have been explored for FER. Hand-
crafted approaches [10,11,22] perform three steps sequentially: feature extrac-
tion, feature selection and classification. This can lead to suboptimal recognition,
due to the combination of different optimization targets.

Convolutional Neural Network (CNN) architectures [23–25] have recently
shown excellent performance on face-related recognition tasks [26–28]. Meth-
ods that resort to the CNN architecture have also been proposed for FER. For
example, Yu et al. [5] used an ensemble of multiple deep CNNs. Mollahosseini
et al. [16] used three inception structures [24] in convolution for FER. All these
methods treat expression instances of different intensities of the same subject
independently. Hence, the correlations between peak and non-peak expressions
are overlooked during learning. In contrast, the proposed PPDN learns to embed
the evolution from non-peak to peak expressions, so as to facilitate image-based
FER.
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3 The Peak-Piloted Deep Network (PPDN)

In this work we introduce the PPDN framework, which implicitly learns the
evolution from non-peak to peak expressions, in the FER context. As illustrated
in Fig. 3, during training the PPDN takes an image pair as input. This consists
of a peak and a non-peak expression of the same type and from the same sub-
ject. This image pair is passed through several convolutional and fully-connected
layers, generating pairs of feature maps for each expression image. To drive the
feature responses to the non-peak expression image towards those of the peak
expression image, the L2-norm of the feature differences is minimized. The learn-
ing algorithm optimizes a combination of this L2-norm loss and two recognition
losses, one per expression image. Due to its excellent performance on several
face-related recognition tasks [29,30], the popular GoogLeNet [24] is adopted as
the basic network architecture. The incarnations of the inception architecture
in GoogLeNet are restricted to filters sizes 1 × 1, 3 × 3 and 5 × 5. In total, the
GoogLeNet implements nine inception structures after two convolutional layers
and two max pooling layers. After that, the first fully-connected layer produces
the intermediate features with 1024 dimensions, and the second fully-connected

Fig. 3. Illustration of the training stage of PPDN. During training, PPDN takes the
pair of peak and non-peak expression images as input. After passing the pair through
several convolutional and fully-connected layers, the intermediate feature maps can
be obtained for peak and non-peak expression images, respectively. The L2-norm loss
between these feature maps is optimized for driving the features of the non-peak expres-
sion image towards those of the peak expression image. The network parameters can
thus be updated by jointly optimizing the L2-norm losses and the losses of recogniz-
ing two expression images. During the back-propagation process, the Peak Gradient
Suppression (PGS) is utilized.
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layer generates the label predictions for six expression labels. During testing, the
PPDN takes one still image as input, outputting the predicted probabilities for
all six expression labels.

3.1 Network Optimization

The goal of the PPDN is to learn the evolution from non-peak to peak expres-
sions, as well as recognize the basic facial expressions. We denote the training set
as S = {xp

i , x
n
i , yp

i , yn
i , i = 1, ..., N}, where sample xn

i denotes a face with non-
peak expression, xp

i a face with the corresponding peak expression, and yn
i and

yp
i are the corresponding expression labels. To supervise the feature responses to

the non-peak expression instance with those of the peak expression instance, the
network is learned with a loss function that includes the L2-norm of the differ-
ence between the feature responses to peak and non-peak expression instances.
Cross-entropy losses are also used to optimize the recognition of the two expres-
sion images. Overall, the loss of the PPDN is

J =
1
N

(J1 + J2 + J3 + λ

N∑

i=1

||W ||2)

=
1
N

N∑

i=1

∑

j∈Ω

‖fj(x
p
i ,W ) − fj(xn

i ,W )‖2 +
1
N

N∑

i=1

L(yp
i , f(xp

i ;W ))

+
1
N

N∑

i=1

L(yn
i , f(xn

i ;W )) + λ||W ||2,

(1)

where J1, J2 and J3 indicate the L2-norm of the feature differences and the
two cross-entropy losses for recognition, respectively. Note that the peak-piloted
feature transformation is quite generic and could be applied to the features
produced by any layers. We denote Ω as the set of layers that employ the peak-
piloted transformation, and fj , j ∈ Ω as the feature maps in the j-th layer. To
reduce the effects caused by scale variability of the training data, the features
fj are L2 normalized before the L2-norm of the difference is computed. More
specifically, the feature maps fj are concatenated into one vector, which is L2
normalized. In the second and third terms, L represents the cross-entropy loss
between the ground-truth labels and the predicted probabilities of all labels. The
final regularization term is used to penalize the complexity of network parameters
W . Since the evolution from non-peak to peak expression is embedded into the
network, the latter learns a more robust expression recognizer.

3.2 Peak Gradient Suppression (PGS)

To train the PPDN, we propose a special-purpose back-propagation algorithm for
the optimization of (1). Rather than the traditional straightforward application
of stochastic gradient descent [13,29], the goal is to drive the intermediate-layer
responses of non-peak expression instances towards those of the corresponding



Peak-Piloted Deep Network for Facial Expression Recognition 431

peak expression instances, while avoiding the reverse. Under traditional stochas-
tic gradient decent (SGD) [31], the network parameters would be updated with

W+ = W − γ∇WJ(W ; xp
i , x

p
i , y

n
i , yp

i )

= W − γ

N

∂J1(W ; xn
i , xp

i )

∂fj(W ; xn
i )

× ∂fj(W ; xn
i )

∂W
− γ

N

∂J1(W ; xn
i , xp

i )

∂fj(W ; xp
i )

× ∂fj(W ; xp
i )

∂W

− 1

N
γ∇WJ2(W ; xp

i , y
p
i ) − 1

N
γ∇WJ3(W ; xn

i , yn
i ) − 2γW,

(2)
where γ is the learning rate. The proposed peak gradient suppression (PGS)

learning algorithm uses instead the updates

W+ = W − γ

N

∂J1(W ;xn
i , xp

i )
∂fj(W ;xn

i )
× ∂fj(W ;xn

i )
∂W

− 1
N

γ∇W J2(W ;xp
i , y

p
i ) − 1

N
γ∇W J3(W ;xn

i , yn
i ) − 2γW.

(3)

The difference between (3) and (2) is that the gradients due to the feature
responses of the peak expression image, − γ

N

∂J1(W ;xn
i ,xp

i )

∂fj(W ;xp
i )

× ∂fj(W ;xp
i )

∂W are sup-
pressed in (3). In this way, PGS drives the feature responses of non-peak expres-
sions towards those of peak expressions, but not the contrary. In the appendix,
we show that this does not prevent learning, since the weight update direction
of PGS is a descent direction of the overall loss, although not a steepest descent
direction.

4 Experiments

To evaluate the PPDN, we conduct extensive experiments on two popular FER
datasets: CK+ [17] and Oulu-CASIA [18]. To further demonstrate that the
PPDN generalizes to other recognition tasks, we also evaluate its performance
on face recognition over the public Multi-PIE dataset [19].

4.1 Facial Expression Recognition

Training. The PPDN uses the GoogLeNet [24] as basic network structure.
The peak-piloted feature transformation is only employed in the last two fully-
connected layers. Other configurations, using the peak-piloted feature transfor-
mation on various convolutional layers are also reported. Since it is not feasible
to train the deep network on the small FER datasets available, we pre-trained
GoogLeNet [24] on a large-scale face recognition dataset, the CASIA Webface
dataset [32]. This network was then fine-tuned for FER. The CASIA Webface
dataset contains 494,414 training images from 10,575 subjects, which were used
to pre-train the network for 60 epochs with an initial learning rate of 0.01. For
fine-tuning, the face region was first aligned with the detected eyes and mouth
positions. The face regions were then resized to 128 × 128. The PPDN takes a
pair of peak and non-peak expression images as input. The convolutional layer
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weights were initialized with those of the pre-trained model. The weights of the
fully connected layer were initialized randomly using the “xaiver” procedure [33].
The learning rate of the fully connected layers was set to 0.0001 and that of pre-
trained convolutional layers to 0.000001. ALL models were trained using a batch
size of 128 image pairs and a weight decay of 0.0002. The final trained model
was obtained after 20,000 iterations. For fair comparison with previous meth-
ods [4,10,11], we did not use any data augmentation in our experiments.

Testing and Evaluation Metric. In the testing phase, the PPDN takes one
testing image as the input and produces its predicted facial expression label.
Following the standard setting of [10,11], 10-fold subject-independent cross-
validation was adopted for evaluation in all experiments.

Datasets. FER datasets usually provide video sequences for training and test-
ing the facial expression recognizers. We conducted all experiments on two popu-
lar datasets, CK+ [17] and Oulu-CASIA dataset [18]. For each sequence, the face
often gradually evolves from a neutral to a peak facial expression. CK+ includes
six basic facial expressions (angry, happy, surprise, sad, disgust, fear) and one
non basic expression (contempt). It contains 593 sequences from 123 subjects,
of which only 327 are annotated with expression labels. Oulu-CASIA contains
480 sequences of six facial expressions under normal illumination, including 80
subjects between 23 and 58 years old.

Comparisons with Still Image-Based Approaches. Table 1 compares
the PPDN to still image-based approaches on CK+, under the standard set-
ting in which only the last one to three frames (i.e., nearly peak expres-
sions) per sequence are considered for training and testing. Four state-of-the-art
methods are considered: common and specific patches learning (CSPL) [10],
which employs multi-task learning for feature selection, AdaGabor [34] and
LBPSVM [11], which are based on AdaBoost [36], and Boosted Deep Belief
Network (BDBN) [4], which jointly optimizes feature extraction and feature

Table 1. Performance comparisons on six facial expressions with four state-of-the-art
methods and the baseline using GoogLeNet in terms of average classification accuracy
by the 10-fold cross-validation evaluation on CK+ database.

Method Average accuracy

CSPL [10] 89.9 %

AdaGabor [34] 93.3 %

LBPSVM [11] 95.1 %

BDBN [4] 96.7 %

GoogLeNet(baseline) 95.0 %

PPDN 97.3%
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Table 2. Performance comparisons on six facial expressions with UDCS method and
the baseline using GoogLeNet in terms of average classification accuracy under same
setting as UDCS.

Method Average accuracy

UDCS [35] 49.5 %

GoogLeNet(baseline) 66.6 %

PPDN 72.4%

selection. In addition, we also compare the PPDN to the baseline “GoogLeNet
(baseline),” which optimizes the standard GoogLeNet with SGD. Similarly to
previous methods [4,10,11], the PPDN is evaluated on the last three frames of
each sequence. Table 2 compares the PPDN with UDCS [35] on Oulu-CASIA,
under a similar setting where the first 9 images of each sequence are ignored,
the first 40 individuals are taken as training samples and the rest as testing. In
all cases, the PPDN input is the pair of one of the non-peak frames (all frames
other than the last one) and the corresponding peak frame (the last frame) in
a sequence. The PPDN significantly outperforms all other, achieving 97.3 % vs
a previous best of 96.7 % on CK+ and 72.4 % vs 66.6 % on Oulu-CASIA. This
demonstrates the superiority of embedding the expression evolution in the net-
work learning.

Training and Testing with More Non-peak Expressions. The main
advantage of the PPDN is its improved ability to recognize non-peak expressions.
To test this, we compared how performance varies with the number of non-peak
expressions. Note that for each video sequence, the face expression evolves from
neutral to a peak expression. The first six frames within a sequence are usually
neutral, with the peak expression appearing in the final frames. Empirically,
we determined that the 7th to 9th frame often show non-peak expressions with
very weak intensities, which we denote as “weak expressions.” In addition to the
training images used in the standard setting, we used all frames beyond the 7th
for training.

Since the previous methods did not publish their codes, we only compare the
PPDN to the baseline “GoogLeNet (baseline)”. Table 3 reports results for CK+
and Table 4 for Oulu-CASIA. Three different test sets were considered: “weak
expression” indicates that the test set only contains the non-peak expression
images from the 7th to the 9th frames; “peak expression” only includes the last
frame; and “combined” uses all frames from the 7th to the last. “PPDN (standard
SGD)” is the version of PPDN trained with standard SGD optimization, and
“GoogLeNet (baseline)” the basic GoogLeNet, taking each expression image as
input and trained with SGD. The most substantial improvements are obtained
on the “weak expression” test set, 83.36% and 67.95% of “PPDN” vs. 78.10%
and 64.64% of “GoogLeNet (baseline)” on CK+ and Oulu-CASIA, respectively.
This is evidence in support of the advantage of explicitly learning the evolution
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Table 3. Performance comparison on CK+ database in terms of average classification
accuracy of the 10-fold cross-validation when evaluating on three different test sets,
including “weak expression”, “peak expression” and “combined”, respectively.

Method Weak expression Peak expression combined

PPDN(standard SGD) 81.34 % 99.12 % 94.18 %

GoogLeNet (baseline) 78.10 % 98.96 % 92.19 %

PPDN 83.36% 99.30% 95.33%

Table 4. Performance comparison on Oulu-CASIA database in terms of average classi-
fication accuracy of the 10-fold cross-validation when evaluating on three different test
sets, including “weak expression”, “peak expression” and “combined”, respectively.

Method Weak expression Peak expression combined

PPDN(standard SGD) 67.05 % 82.91 % 73.54 %

GoogLeNet (baseline) 64.64 % 79.21 % 71.32 %

PPDN 67.95% 84.59% 74.99%

from non-peak to peak expressions. In addition, the PPDN outperforms “PPDN
(standard SGD)” and “GoogLeNet (baseline)” on the combined sets, where both
peak and non-peak expressions are evaluated.

Comparisons with Sequence-Based Approaches. Unlike the still-image
recognition setting, which evaluates the predictions of frames from a sequence,
the sequence-based setting requires a prediction for the whole sequence. Previ-
ous sequence-based approaches take the whole sequence as input and use motion
information during inference. Instead, the PPDN regards each pair of non-peak
and peak frame as input, and only outputs the label of the peak frame as pre-
diction for the whole sequence, in the testing phase. Tables 5 and 6 compare
the PPDN to several sequence-based approaches plus “GoogLeNet(baseline)” on
CK+ and Oulu-CASIA. Compared with [1,7,37], which leverage motion infor-
mation, the PPDN, which only relies on appearance information, achieves sig-
nificantly better prediction performance. On CK+, it has gains of 5.1% and 2%
over ‘STM-ExpLet” [1] and “DTAGN(Joint)” [7]. On Oulu-CASIA it achieves
84.59% vs. the 75.52% of “Atlases” [20] and the 81.46% of “DTAGN(Joint)” [7].
In addition, we evaluate this experiment without peak information, i.e. select-
ing image with highest classification scores for all categories as peak frame in
testing. PPDN achieves 99.2% on CK+ and 83.67% on Oulu-CASIA.

PGS vs. Standard SGD. As discussed above, PGS suppresses gradients
from peak expressions, so as to drive the features of non-peak expression sam-
ples towards those of peak expression samples, but not the contrary. Standard
SGD uses all gradients, due to both non-peak and peak expression samples. We
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Table 5. Performance comparisons with three sequence-based approaches and the
baseline “GoogLeNet (baseline)” in terms of average classification accuracy of the 10-
fold cross-validation on CK+ database.

Method Experimental settings Average accuracy

3DCNN-DAP [37] sequence-based 92.4 %

STM-ExpLet [1] sequence-based 94.2 %

DTAGN(Joint) [7] sequence-based 97.3 %

GoogLeNet (baseline) image-based 99.0 %

PPDN (standard SGD) image-based 99.1 %

PPDN w/o peak image-based 99.2%

PPDN image-based 99.3%

Table 6. Performance comparisons with five sequence-based approaches and the base-
line “GoogLeNet (baseline)” in terms of average classification accuracy of the 10-fold
cross-validation on Oulu-CASIA.

Method Experimental settings Average accuracy

HOG 3D [21] sequence-based 70.63 %

AdaLBP [18] sequence-based 73.54 %

Atlases [20] sequence-based 75.52 %

STM-ExpLet [1] sequence-based 74.59 %

DTAGN(Joint) [7] sequence-based 81.46 %

GoogLeNet (baseline) image-based 79.21 %

PPDN (standard SGD) image-based 82.91 %

PPDN w/o peak image-based 83.67%

PPDN image-based 84.59%

hypothesized that this will degrade recognition for samples of peak expressions,
due to interference from non-peak expression samples. This hypothesis is con-
firmed by the results of Tables 3 and 4. PGS outperforms standard SGD on all
three test sets.

Ablative Studies on Peak-Piloted Feature Transformation. The peak-
piloted feature transformation, which is the key innovation of the PPDN, can
be used on all layers of the network. Employing the transformation on different
convolutional and fully-connected layers can result in different levels of supervi-
sion of non-peak responses by peak responses. For example, early convolutional
layers extract fine-grained details (e.g., local boundaries or illuminations) of
faces, while later layers capture more semantic information, e.g., the appear-
ance pattens of mouths and eyes. Table 7 presents an extensive comparison, by
adding peak-piloted feature supervision on various layers. Note that we employ
GoogLeNet [24], which includes 9 inception layers, as basic network. Four dif-



436 X. Zhao et al.

Table 7. Performance comparisons by adding the peak-piloted feature transformation
on different convolutional layers when evaluated on Oulu-CASIA dataset.

Method inception layers the last FC layer the first FC layer both FC layers

Inception-3a � × × ×
Inception-3b � × × ×
Inception-4a � × × ×
Inception-4b � × × ×
Inception-4c � × × ×
Inception-4d � × × ×
Inception-4e � × × ×
Inception-5a � × × ×
Inception-5b � × × ×
Fc1 � × � �
Fc2 � � × �
Average accuracy 74.49% 73.33% 73.48% 74.99%

Table 8. Comparisons of the version with and without using peak information on
Oulu-CASIA database in terms of average classification accuracy of the 10-fold cross-
validation.

Method Weak expression Peak expression Combined

PPDN w/o peak 67.52 % 83.79 % 74.01 %

PPDN 67.95% 84.59% 74.99%

Table 9. Face recognition rates for various poses under “setting 1”.

Method −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ Average

GoogLeNet (baseline) 86.57 % 99.3 % 100 % 100% 100 % 90.06 % 95.99 %

PPDN 93.96% 100% 100% 100% 100% 93.96% 97.98%

Table 10. Face recognition rates for various poses under “setting 2”.

Method −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ Average

Li et al. [38] 56.62% 77.22% 89.12% 88.81% 79.12% 58.14% 74.84%

Zhu et al. [27] 67.10% 74.60% 86.10% 83.30% 75.30% 61.80% 74.70%

CPI [28] 66.60% 78.00% 87.30% 85.50% 75.80% 62.30% 75.90%

CPF [28] 73.00% 81.70% 89.40% 89.50% 80.50% 70.30% 80.70%

GoogLeNet (baseline) 56.62% 77.22% 89.12% 88.81% 79.12% 58.14% 74.84%

PPDN 72.06% 85.41% 92.44% 91.38% 87.07% 70.97% 83.22%
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ferent settings are tested: “inception layers” indicates that the loss of the peak-
piloted feature transformation is appended for all inception layers plus the two
fully-connected layers; “the first FC layer,”“the last FC layer” and “both FC
layers” append the loss to the first, last, and both fully-connected layers, respec-
tively.

It can be seen that using the peak-piloted feature transformation only on the
two fully connected layers achieves the best performance. Using additional losses
on all inception layers has roughly the same performance. Eliminating the loss of
a fully-connected layer decreases performance by more than 1 %. These results
show that the peak-piloted feature transformation is more useful for supervising
the highly semantic feature representations (two fully-connected layers) than the
early convolutional layers.

Absence of Peak Information. Table 8 demonstrates that the PPDN can also
be used when the peak frame is not known a priori, which is usually the case for
real-world videos. Given all video sequences, we trained the basic “GoogLeNet
(baseline)” with 10-fold cross validation. The models were trained with 9-folds
and then used to predict the ground-truth expression label in the remaining
fold. The frame with the highest prediction score in each sequence was treated
as the peak expression image. The PPDN was finally trained using the strategy
of the previous experiments. This training procedure is more applicable to videos
where the information of the peak expression is not available. The PPDN can still
obtain results comparable to those of the model trained with the ground-truth
peak frame information.

4.2 Generalization Ability of the PPDN

The learning of the evolution from a hard sample to an easy sample is applicable
to other face-related recognition tasks. We demonstrate this by evaluating the
PPDN on face recognition. One challenge to this task is learning robust features,
invariant to pose and view. In this case, near-frontal faces can be treated easy
examples, similar to peak expressions in FER, while profile faces can be viewed
as hard samples, similar to non-peak expressions. The effectiveness of PPDN in
learning pose-invariant features is demonstrated by comparing PPDN features
to the “GoogLeNet(baseline)” features on the popular Multi-PIE dataset [19].

All the following experiments were conducted on the images of “session 1” on
Multi-PIE, where the face images of 249 subjects are provided. Two experimen-
tal settings were evaluated to demonstrate the generalization ability of PPDN
on face recognition. For the “setting 1” of Table 9, only images under normal
illumination were used for training and testing, where seven poses of the first
100 subjects (ID from 001 to 100) were used for training and the six poses (from
−45◦ to 45◦) of the remaining individuals used for testing. One frontal face per
subject was used as gallery image. Overall, 700 images were used for training
and 894 images for testing. By treating the frontal face and one of the profile
faces as input, the PPDN can embed the implicit transformation from profile
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faces to frontal faces into the network learning, for face recognition purposes.
In the “setting 2” of Table 10, 100 subjects (ID 001 to 100) with seven different
poses under 20 different illumination conditions were used for training and the
rest with six poses and 19 illumination conditions were used for testing. This
led to 14,000 training images and 16,986 testing images. Similarly to the first
setting, PPDN takes the pair of a frontal face with normal illumination and one
of the profile faces with 20 illuminations from the same subject as the input.
The PPDN can thus learn the evolution from both the profile to the frontal face
and non-normal to normal illumination. In addition to “GoogLeNet (baseline),”
we compared the PPDN to four state-of-the-art methods: controlled pose fea-
ture(CPF) [28], controlled pose image(CPI) [28], Zhu et al. [27] and Li et al. [38].
The pre-trained model, prepocessing steps, and learning rate used in the FER
experiments were adopted here. Under “setting 1” the network was trained with
10,000 iterations and under “setting 2” with 30,000 iterations. Face recognition
performance is measured by the accuracy of the predicted subject identity.

It can be seen that the PPDN achieves considerable improvements over
“GoogLeNet (baseline)” for the testing images of hard poses (i.e., −45◦ and 45◦)
in both “setting 1” and “setting 2”. Significant improvements over “GoogLeNet
(baseline)” are also observed for the average over all poses (97.98% vs 95.99%
under “setting 1” and 83.22% vs 74.84% under “setting 2”). The PPDN also
beats all baselines by 2.52% under “setting 2”. This supports the conclusion that
the PPDN can be effectively generalized to face recognition tasks, which ben-
efit from embedding the evolution from hard to easy samples into the network
parameters.

5 Conclusions

In this paper, we propose a novel peak-piloted deep network for facial expression
recognition. The main novelty is the embedding of the expression evolution from
non-peak to peak into the network parameters. PPDN jointly optimizes an L2-
norm loss of peak-piloted feature transformation and the cross-entropy losses of
expression recognition. By using a special-purpose back-propagation procedure
(PGS) for network optimization, the PPDN can drive the intermediate-layer
features of the non-peak expression sample towards those of the peak expression
sample, while avoiding the inverse.

Acknowledgement. We thank Xuecheng Nie for useful discussions. This work is
partially supported by the China Postdoctoral Science Foundation (No. 2016T90148).

Appendix

The loss

J1 =
N∑

i=1

∑

j∈Ω

‖fj(x
p
i ,W ) − fj(xn

i ,W )‖2 (A-1)
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has gradient

∇W J1 = 2
N∑

i=1

∑

j∈Ω

(fj(x
p
i ,W ) − fj(xn

i ,W ))∇W fj(xn
i ,W )

+ 2
N∑

i=1

∑

j∈Ω

(fj(x
p
i ,W ) − fj(xn

i ,W ))∇W fj(x
p
i ,W ).

(A-2)

The PGS is

˜∇W J1 = 2
N∑

i=1

∑

j∈Ω

(fj(x
p
i ,W ) − fj(xn

i ,W ))∇W fj(xn
i ,W ) (A-3)

Defining

A =
N∑

i=1

∑

j∈Ω

(fj(x
p
i ,W ) − fj(xn

i ,W ))∇W fj(xn
i ,W ) (A-4)

and

B =
N∑

i=1

∑

j∈Ω

(fj(x
p
i ,W ) − fj(xn

i ,W ))∇W fj(x
p
i ,W ) (A-5)

it follows that

< ∇W J1, ˜∇W J1 > = −4 < A,B > +4‖A‖2 (A-6)

or
< ∇W J1, ˜∇W J1 > = −4‖A‖‖B‖ cos θ + 4‖A‖2 (A-7)

where θ is angle between A and B. Hence, the dot-product is greater than zero
when

‖B‖ cos θ < ‖A‖. (A-8)

This holds for sure as ∇W fj(xn
i ,W ) converges to ∇W fj(x

p
i ,W ) which is the goal

of optimization, but is generally true if the sizes of gradients ∇W fj(xn
i ,W ) and

∇W fj(x
p
i ,W ) are similar on average. Since the dot-product is positive, ˜∇W J1

is a descent (although not a steepest descent) direction for the loss function J1.
Hence, the PGS is a descent direction for the total loss. Note that, because there
are also the gradients of J2 and J3, this can hold even when (A-8) is violated, if
the gradients of J2 and J3 are dominant. Hence, the PGS is likely to converge
to a minimum of the loss.
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